	<spe< td=""><td>CIFICAT</td><td>ION></td><td></td></spe<>	CIFICAT	ION>	
				DIQ-SPE-039(00) 6, 2022
То :				
Γ	CUSTOM	ER'S PRODUCT NAI	ME	
		DDUCT NAME: 12B-Series		
	1011			
	ION ONAL CONSENT		CONDITIONAL CO	DNSENT
	APPROVED		CHECKED	
ASDI SIGNATURE				
	APPROVED Xianglong Li	CHECKED Liang Wang	PREPARED Jiayin Cai	

Xiamen ASDI Electronics Co.,Ltd.

REV.	DATE	DESCRIPTION	APPROVED	CHECKED	PREPARED
00	Jan. 6, 2022	New release	Xianglong Li	Liang Wang	Jiayin Cai

CAUTION WHEN HANDLING

Before use the products, please read this specification.

CAUTION FOR SAFETY USING

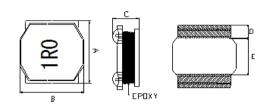
When use the products, be careful to mentioned below for safety using.

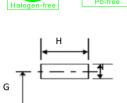
CUSTOMER	ASDI PART No.	CUSTOMER'S DWG NO.
Each Corporation	AMPI4012B-Series	

1.INDEX

Listed item	Attachment&Tables	Page
1.Features	Please see (1)	3/8
2.Dimensions	Please see (2)	3/8
3.Part Numbering	Please see (3)	3/8
4.Electrical Specifications	Please see (4)	3/8
5.Material List	Please see (5)	5/8
6.Reliability Tests	Please see (6)	5/8
7.Soldering	Please see (7)	7/8
8.Packaging Information	Please see (8)	7/8
9.Note	Please see (9)	8/8

2.Manufacturing Location


China


	DWG.No.	ASDIQ-SPE-039(00)	PAGE 2/8		
Xiamen ASDI Electronics Co.,Ltd.					

(1)Features

1.This specification applies Low Profile Power Inductors. 2.100% Lead(Pb) & Halogen-Free and RoHS compliant.

(2)Dimensions

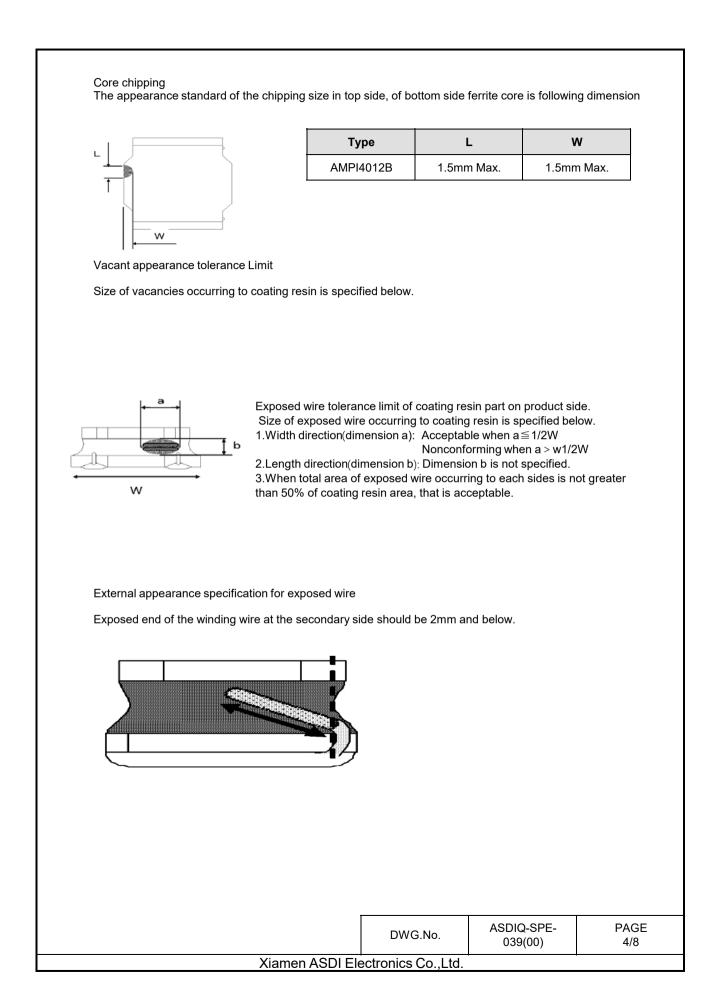
*	Ł	_	 <u>+</u> ‡

								Units: mm
Series	A(mm)	B(mm)	C(mm)	D(mm)	E(mm)	G(mm)	H(mm)	l(mm)
AMPI4012B	4.0±0.2	4.0±0.2	1.2 max.	1.2ref.	1.8ref.	2.8 ref.	3.7 ref.	1.2 ref.

(3)Part Numbering

AMPI A	4012 B	B C	-	2R2 D	M
A: Series B: Dimension C: Control S/N D: Inductance E: Inductance	Folerance	2R2=2 M=±2	2μH 0%; N=±:	30%;	

(4)Electrical Specifications


Table 1

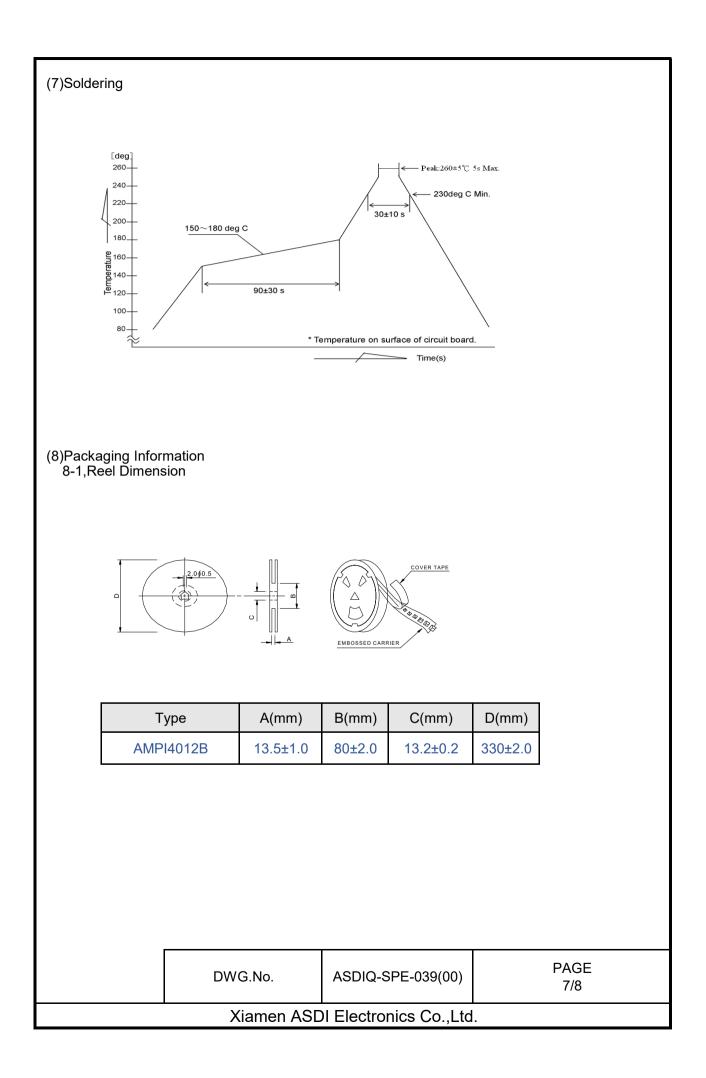
ASDI Part Number	Inductance (µH)	Tolerance (%)	Test Frequency (Hz)	SRF (MHz) min.	DCR (Ω) ±30%	l sat (A)	l rms (A)
AMPI4012B-1R0N	1.0	±30%	100kHz/1V	100.0	0.042	2.80	2.20
AMPI4012B-2R2M	2.2	±20%	100kHz/1V	70.0	0.060	1.65	1.90
AMPI4012B-3R3M	3.3	±20%	100kHz/1V	60.0	0.070	1.40	1.70
AMPI4012B-4R7M	4.7	±20%	100kHz/1V	45.0	0.095	1.20	1.50
AMPI4012B-6R8M	6.8	±20%	100kHz/1V	35.0	0.125	0.90	1.30
AMPI4012B-100M	10.0	±20%	100kHz/1V	30.0	0.170	0.80	1.10
AMPI4012B-150M	15.0	±20%	100kHz/1V	24.0	0.260	0.65	0.75
AMPI4012B-220M	22.0	±20%	100kHz/1V	18.0	0.400	0.50	0.62

Note:

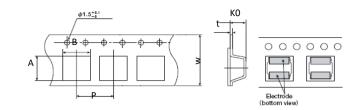
lsat: Based on inductance change (\triangle L/L0: \leq -30%) @ ambient temp. 25°C Irms: Based on temperature rise (△T: 40℃ typ.)

	DWG.No.	ASDIQ-SPE- 039(00)	PAGE 3/8
Xiamen	ASDI Electronics Co	o.,Ltd.	

(5)Material List


0 2 3	
[*] (4)	

	NO	Items	Materials
	1	Core	Ni-Zn ferrite
	2	Wire	Copper Wire
	3	Coating	Ероху
)	4	Solder	Lead free


(6)Reliability tests

No.	Test item	Performa	nce	Test det	ails
1	Operating	- 25 ~ +12		Including self-generated h	neat
	temperature Storage				
2	temperature and Humidity range	$-40 \sim +85 ^{\circ}$ C. - 5 to 40 $^{\circ}$ C for the product with taping.			
3	Rated current				
4	Inductance (L)	Within the specifi	Within the specified tolerance		equivalent, 100kHz
5	DC Resistance				?7 or equivalent
6	Temperature characteristics	Inductance change	: Within±20%	Measurement of inductan temperature rang within With reference to inducta °C, change rate shall be ca Measurement of inductan temperature rang within With reference to inducta °C, change rate shall be ca	25℃ to +85℃. nce value at+20 alculated. ce shall be taken a 40℃ to +125℃. nce value at+20
7	Resistance to flexure substrate	No dama	age	The test samples shall be testing board by the reflox As illustrated below, apply direction of the arrow indi of the test board reaches	w. y force in the cating until deflection to 2mm. $\frac{100}{2}$ $\frac{100}{100}$
8	Adhesion of Terminal electrode	Shall not come o	ff PC board.	The test samples shall be testing board and by the r 10 N, Applied force: 10 N to X Duration: 5s Solder cream thickness:	eflow. 5 s and Y directions.
9	Resistance to Vibration		Inductance change: Within±10% No abnormality observed in appearance. The test samples shall be submitted to conditions. Frequency: 10-55Hz Total Amplitude: 1.5mm (Ma acceleration 196m/S2) Sweeping Method:10Hz to 5 1min. Time: 2 hours each in X,Y, Recovery: At least 2hrs of re standard condition after the the measurement within 48h		I to below test May not exceed o 55Hz to 10Hz for Y, and Z Direction. f recovery under th ne test, followed by
					PAG

No.	Test item	Performance	Test details		
10	Solderability	At least 90% of surface of terminal electrode is covered by new solder.	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below. Flux: methanol solution containing rosin 25% Solder temperature: 245±5°C Time: 5±1.0 sec. Immersion depth: All sides of mounting terminal shall be immersed.		
11	Resistance to soldering	Inductance change:Within±10% No abnormality observed in appearance.	The test sample shall be exposed to reflow oven at 230±5℃ for 40 seconds, with peak temperature at 260±5℃ for 5 seconds,2 times. Test board thickness: 1.0mm Test board material: glass epoxy-resin		
12	Thermal shock	Inductance change:Within±10% No abnormality observed in appearance.	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed at specified temperature for specified time by step 1 to step 4 as shown below in sequence. The temperature cycles shall be repeated 100 cycles . $\frac{Phase Temperature(C) Time(min.)}{1 - 40\pm3^{\circ}C} 30\pm3$ $\frac{2 \text{ Room Temp}}{30\pm3} 30\pm3$ $\frac{3 + 85\pm2^{\circ}C}{4} 30\pm3$		
13	Damp heat life test		Test Method and Remarks The test samples sh be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity shown in below. Temperature: 60±2°C Humidity: 90~95%RH Time: 500+24/-0 hrs		
14	Loading under damp heat life test	nductance change:Within±10% No abnormality observed in appearance.	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity an applied the rated current continuously as shown in below. Temperature: 60±2°C Humidity: 90~95%RH Applied current: Rated current Time: 500+24/-0 hrs		
15	Low temperature life test		The test samples shall be soldered to the test oard by the reflow. (fter that, the test samples shall be placed at test onditions as shown in below. Temperature:-40±2°C Time:500+24/-0 hrs		
16	Loading at high temperature life test		The test samples shall be soldered to the test board by the reflow. Temperature: 85±2°C. Applied current: Rated current Time: 500+24/-0 hrs.		
			ASDIQ-SPE- PAGE		

8-2, Tape Dimension

Series	A(mm)	B(mm)	Ko(mm)	P(mm)	W(mm)	t(mm)
AMPI4012B	4.3±0.1	4.3±0.1	1.6±0.1	8.0±0.1	12.0±0.3	0.3±0.05

8-3, Packaging Quantity

Туре	Chip / Reel
AMPI4012B	4000

(9)Note

·Storage Conditions

To maintain the solderability of terminal electrodes:

1. ASDI products meet IPC/JEDEC J-STD-020D standard-MSL, level 1.

2. Temperature and humidity conditions: Temperature: 5 to 30deg.C, Humidity: 75% Max.

3. Recommended products should be used within 12 months form the time of delivery.

4. The packaging material should be kept where no chlorine or sulfur exists in the air.

·Transportation

1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.

2. The use of tweezers or vacuum pick up is strongly recommended for individual components.

3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

DWG.No.	ASDIQ-SPE-039(00)	PAGE 8/8			
Xiamen ASDI Electronics Co.,Ltd.					
/					